
Rendering an Interactive Wooden Artist’s Mannequin
Exploring Inverse Kinematics and Procedural Wood Shading

Sean Carroll, Amber Hillhouse, Brian Kutsop, Youenn Paris, Daniel Sperling, Charles Yan
December 15, 2014

1 Introduction
The purpose of our project was to create a pro-
gram that allows the user to ultimately cre-
ate a high-quality rendered image of a wooden
artist’s mannequin in a position of their choice.

This program consists of two
main parts: an interface where
the user can interact with and
position the model dynamically
through the use of triangula-
tion and cyclic coordinate de-
scent (CCD), and a wood shader
that generates the image. Once
the mannequin has been posi-
tioned into the correct pose, an
accurate wood rendering can be
generated and saved.

2 Features and Capabilities
Cyclic Coordinate Descent (Key C): This rotates all of
the current joint’s parent joints through to the root (body
center) of the mannequin. The motion is less centralized
but more realistic looking.

Triangulation (Key V): This allows the user to
have more local control by rotating only the previous 2
joints in an attempt to solve for the exact triangle between
the three joints. Because the middle joint (think ”elbow”
for the arm) has a circular-shaped degree of freedom around
the axis between the top and lower joint (think shoulder
and wrist), the behavior tends to be more unpredictable
than CCD.

Object/World Coordinates (Key N for Object,
Key B for World): This makes the CCD or triangulation
try to follow the object or world coordinates of the end
effector as closely as possible when dragged.

Number of CCD joints effected (Key 0 for all
joints through root, Any number key for # of
joints): When in CCD mode, this allows the user to
specify how many earlier joints are effected by the CCD.

Wood Rendering (Key F4): This uses ray tracing
to place a realistic wood shading on the mannequin, and
saves the generated image as a .png file in the project’s
data/scenes/ directory.

3 Inverse Kinematics
Mannequin Mesh Hierarchy: The full mannequin mesh
was created by: (1) Downloading the full mesh from a free
open source Blender project,1 (2) Saving each of the indi-
vidual body parts with the mesh vertices in object space,
and (3) Creating an XML that contains the correct obect
hierarchy and initial translations/rotations of the joints.
The meshes are saved in the /data/meshes/mannequin di-
rectory, and the XML is saved in the /data/scenes directory.

Joint Objects: In order to represent joints, we created
subclasses of the SceneObject and RenderObject classes,
classes SceneJoint and RenderJoint respectively. The com-
mon/Scene.java file was edited in order to create SceneJoints
from an XML 〈joint〉 tag, and gl/RenderTreeBuilder.java
was edited to create RenderJoints from SceneJoints.

Manipulator Controller: Because the orientation of the
end effector changes as we rotate the joints to perform
the translations, and we wanted the translations to move
along the original axis when the joint was chosen instead
of the newly rotated axis, we added a boolean field called
”recalc axes” to gl/manip/manipulator.java that is set to
be true when a joint is selected, and false once the axis of
translation is calculated. This prevents the end effector
from moving in circular motions.

Triangulation: The triangulation of the joints is calcu-
lated by: (1) Calculating the new desired position of the
end effector by translating along the selected manipulator,
(2) Getting the positions of the joints in the object space of
the top joint, (3) Calculating the triangle side lengths and
angles for the 3 local joints, (4) Taking the cross product of
the old and new positions of the end effector to determine
the axis of rotations around each of the joints, and (5)
Using quaternions to calculate the rotation matrices around
the top and middle joints.

CCD: CCD is implemented according to the following steps:
For each iteration of CCD, and for each joint being con-
sidered from end effector through root: (1) Calculate the
current position of the end effector using any temporarily
calculated rotations, (2) Determine the difference between
the current end position and desired end position, and stop
iterating if we are ”close enough”, (3) Get the positions of

1http://jaxmp.deviantart.com/art/Blender-Art-Mannequin-
89266968

1



the joints in the object space of the current joint being ro-
tated, (4) Use quaternions to calculate the new rotations,
(5) Store all currently calculated rotations in the Render-
Joint ”temp transformation” field so that new positions are
not rendered during the calculation process, and (6) Set all
joint transformations equal to their temporarily saved trans-
formations to set the final positions. The current number of
iterations is set at 5, and the implementations are located
in ManipControl.java.

4 Wood Rendering
4.0.1 Wood Coloring

In order to create realistic wood, we developed a model for
calculating growth ring positions in 3D as if the model was
being cut out of a large piece of wood, instead of applying
a 2D texture. Calculating the rings in 3D is more realistic
than simply using a 2D texture because it prevents the tex-
ture from being stretched or skewed in ways that would not
happen if one was to carve something out of a piece of wood.
Furthermore, the 3D model allows wood to be rendered on
any surface - with only minor parameter changes to account
for the size of what is being modeled - without the need for
UV coordinates, which change from object to object.

To create rings, we sampled a light and dark brown from a
real picture of wood, and developed a function that, for each
“ring”, would go gradually from light to dark, more quickly
at the end, and then extremely quickly back to light, or the
beginning of a new ring. We developed and found success
with the following formula:

color(f, t) =
f + cos(2 ∗ π ∗ (1− t)0.25)

(f + 1)
(1)

where f is a scaling factor and 0 ≤ t ≤ 1, which creates the
following graph:

Figure 1: Graph of (1)

An important factor in generating more realistic wood is
randomness. We used Perlin Noise and scaled this noise
by a randomly generated scaling factor in order to create
randomness in the shape of the rings and to create random
particle imperfections on the edges of rings.
4.0.2 Subsurface Reflections

In order to generate a realistic rendering, our group de-
cided to integrate with the ray tracing portion of the project.
This gave the ability for shadowing, anti-aliasing, and much
more complicated reflection.

We implemented subsurface reflection based on the pa-
per ”Measuring and Modeling the Appearance of Finished

Wood” by Marschner, Westin, Arbree, and Moon. This pa-
per details the complicated nature of glossy wooden sur-
faces, where a portion of incoming light is reflected off of
the surface while the remainder is refracted into the mate-
rial, diffusely reflects off of a portion, and also reflects direc-
tionally based on the direction of the wooden fibers in that
area. This produces the ”sheen” effect seen on nice, polished
wood and is a clear differentiation between real wood and
the wood that is frequently used for renderings.

Mathematically, our group followed the formula:

fr(vi, vr) = fs(vi, vr) + TiTr(ρd + ff (u, vi, vr) (2)

where

ff (u, vi, vr) = kf
g(B,ψh)

cos2(ψd/2)
(3)

and

ψi = sin−1(s(vi) · u) (4)

ψr = sin−1(s(vr) · u) (5)

ψd = ψr − ψi (6)

ψh = ψr + ψi (7)

As explained in the paper, the first equation separates
the reflection into surface (fs) and subsurface (ff + ρd) re-
flection, where ρd is diffuse subsurface reflection and ff is
the fiber reflection, attenuated by TiTr representing entering
and exiting the subsurface material.

Fiber reflection is represented by a the specular coeficient
kf , and a Gaussian term and cosine term around the re-
flection of the viewing angle with the fiber angle, generally
represented by ψ. s(v) represents the refraction of the view-
ing angle into the surface.

Once we implemented subsurface refection, we varied the
fiber direction on a per-object basis in the xml, and used the
fiber direction to also determine the general direction of the
pattern of the rings in the wood to mimic realistic wooden
behavior.

5 Integration
The framework used to interact with the mesh was not

directly compatible with the framework for the ray tracer.
There existed a function to export an XML file with the
positions of the mesh on the GUI, but it was not the correct
format for the ray tracer to parse, as the Scene class in the
rasterization code is vastly different than the Scene class in
the Raytracer. We parsed SceneObjects from one scene to
Surfaces in the other.

The camera provided its own challenge, as in one form it
was represented as a matrix from the center and a pair of z
planes, and in the ray tracer it was a view direction, position,
up, and projection distance. Using matrix multiplication
based on the original world position we were able to move
the camera to its correct location. Once this was completed,
rendered images could be produced from the viewed scene.

2


